Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Cardiovasc Med ; 9: 871967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911544

RESUMO

Purpose: Myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) is routinely used for stress testing in nuclear medicine. Recently, our group extended its potential going from 3D visual qualitative image analysis to 4D spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration and the estimated myocardial blood flow (MBF) and coronary flow reserve (CFR). However, the quality of reconstructed image is compromised due to cardiac deformation and respiration. The work presented here develops an algorithm that reconstructs the dynamic sequence of separate respiratory and cardiac phases and evaluates the algorithm with data simulated with a Monte Carlo simulation for the continuous image acquisition and processing with a slowly rotating SPECT camera. Methods: A clinically realistic Monte Carlo (MC) simulation is developed using the 4D Extended Cardiac Torso (XCAT) digital phantom with respiratory and cardiac motion to model continuous data acquisition of dynamic cardiac SPECT with slowly rotating gamma cameras by incorporating deformation and displacement of the myocardium due to cardiac and respiratory motion. We extended our previously developed 4D maximum-likelihood expectation-maximization (MLEM) reconstruction algorithm for a data set binned from a continuous list mode (LM) simulation with cardiac and respiratory information. Our spatiotemporal image reconstruction uses splines to explicitly model the temporal change of the tracer for each cardiac and respiratory gate that delineates the myocardial spatial position as the tracer washes in and out. Unlike in a fully list-mode data acquisition and reconstruction the accumulated photons are binned over a specific but very short time interval corresponding to each cardiac and respiratory gate. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it continuously deforms. These results are then compared with the conventional 4D spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. Mean Stabilized Activity (MSA), signal to noise ratio (SNR) and Bias for the myocardium activities for three different target-to-background ratios (TBRs) are evaluated. Dynamic quantitative indices such as wash-in (K1) and wash-out (k2) rates at each gate were also estimated. Results: The MSA and SNR are higher with higher TBRs while biases were improved with higher TBRs to less than 10%. The correlation between exhalation-inhalation sequence with the ground truth during respiratory cycle was excellent. Our reconstruction method showed better resolved myocardial walls during diastole to systole as compared to the ungated 4D image. Estimated values of K1 and k2 were also consistent with the ground truth. Conclusion: The continuous image acquisition for dynamic scan using conventional two-head gamma cameras can provide valuable information for MPI. Our study demonstrated the viability of using a continuous image acquisition method on a widely used clinical two-head SPECT system. Our reconstruction method showed better resolved myocardial walls during diastole to systole as compared to the ungated 4D image. Precise implementation of reconstruction algorithms, better segmentation techniques by generating images of different tissue types and background activity would improve the feasibility of the method in real clinical environment.

2.
IEEE Trans Med Imaging ; 40(6): 1711-1725, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33690114

RESUMO

Our approach differs from the usual global measure of cardiac efficiency by using PET/MRI to measure efficiency of small pieces of cardiac tissue whose limiting size is equal to the spatial resolution of the PET scanner. We initiated a dynamic cardiac PET study immediately prior to the injection of 15.1 mCi of 11C-acetate acquiring data for 25 minutes while simultaneously acquiring MRI cine data. 1) A 3D finite element (FE) biomechanical model of the imaged heart was constructed by utilizing nonrigid deformable image registration to alter the Dassault Systèmes FE Living Heart Model (LHM) to fit the geometry in the cardiac MRI cine data. The patient specific FE cardiac model with estimates of stress, strain, and work was transformed into PET/MRI format. 2) A 1-tissue compartment model was used to calculate wash-in (K1) and the linear portion of the decay in the PET 11C-acetate time activity curve (TAC) was used to calculate the wash-out k2(mono) rate constant. K1 was used to calculate blood flow and k2(mono) was used to calculate myocardial volume oxygen consumption ( MVO2 ). 3) Estimates of stress and strain were used to calculate Myocardial Equivalent Minute Work ( MEMW ) and Cardiac Efficiency = MEMW/MVO2 was then calculated for 17 tissue segments of the left ventricle. The global MBF was 0.96 ± 0.15 ml/min/gm and MVO2 ranged from 8 to 17 ml/100gm/min. Six central slices of the MRI cine data provided a range of MEMW of 0.1 to 0.4 joules/gm/min and a range of Cardiac Efficiency of 6 to 18%.


Assuntos
Miocárdio , Consumo de Oxigênio , Circulação Coronária , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética
3.
Int J Cardiovasc Imaging ; 37(4): 1461-1472, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33123937

RESUMO

The risk stratification and long-term survival of patients with orthotopic heart transplantation (OHT) is impacted by the complication of cardiac allograft vasculopathy (CAV). This study evaluates changes in myocardial blood flow (MBF) and myocardial coronary flow reserve (CFR) in a group of long-term OHT patients using quantitative cardiac 82Rb-positron emission tomography (PET). Twenty patients (7 females and 13 males, mean age = 72.7 ± 12.2 years with CAV and 62.9 ± 7.2 years without CAV and post-OHT mean time = 13.9 years), were evaluated retrospectively using dynamic cardiac 82Rb-PET at rest and regadenoson-induced stress. The patients also underwent selective coronary angiography (SCA) for diagnosis and risk stratification. CAV was diagnosed based on SCA findings and maximal intimal thickness greater than 0.5 mm, as defined by International Society of Heart and Lung Transplantation (ISHLT). Global and regional MBFs were estimated in three vascular territories using the standard 1-tissue compartment model for dynamic 82Rb-PET. The myocardial CFR was also calculated as the ratio of peak stress MBF to rest MBF. Among twenty patients, seven had CAV in, at least, one major coronary artery (ISHLT CAV grade 1 or higher) while 13 patients did not have CAV (NonCAV). Mean rate-pressure products (RPP) at rest were significantly elevated in CAV patients compared to those without CAV (P = 0.002) but it was insignificant at stress (P = NS). There was no significant difference in the stress MBFs between CAV and NonCAV patients (P = NS). However, the difference in RPP-normalized stress MBFs was significant (P = 0.045), while RPP-normalized MBFs at rest was not significant (P = NS). Both CFR and RPP-normalized CFR were significantly lower in CAV compared to NonCAV patients (P < 0.001). There were significant correlations between MBFs and RPPs at rest for both CAV (ρ = 0.764, P = 0.047) and NonCAV patients (ρ = 0.641, P = 0.017), while there were no correlations at stress for CAV (ρ = 0.232, P = NS) and NonCAV patients (ρ = 0.068, P = NS). This study indicates that the resting MBF is higher in late-term post-OHT patients. The high resting MBF and reduced CFR suggest an unprecedented demand of blood flow and blunted response to stress due to impaired vasodilatory capacity that is exacerbated by the presence of CAV.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Transplante de Coração/efeitos adversos , Imagem de Perfusão do Miocárdio , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Radioisótopos de Rubídio , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Angiografia Coronária , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
5.
Artigo em Inglês | MEDLINE | ID: mdl-31413426

RESUMO

In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images.

7.
J Nucl Cardiol ; 26(3): 763-771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-28776314

RESUMO

BACKGROUND: SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). METHODS: Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99mTc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. RESULTS: Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image analysis also produced a similar accuracy, sensitivity, and specificity. CFR was normal in 6, each with CAD on SCA with an overall accuracy of 91%, sensitivity of 80%, and specificity of 100%. The mean CFR was significantly lower for SCA detected abnormal than for normal patients (3.86±1.06 vs 1.94±0. 0.67, P < 0.001). CONCLUSIONS: The visually assessed image findings in static and dynamic SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion based on SCA. The CFR measured with dynamic SPECT is fully objective, with better sensitivity and specificity, available only with the data generated from the dynamic SPECT method.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Sensibilidade e Especificidade , Tecnécio Tc 99m Sestamibi
8.
J Nucl Cardiol ; 24(4): 1134-1144, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28138813

RESUMO

BACKGROUND: Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. METHODS: Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 years) with no history of post OHT myocardial ischemia were enrolled 5.4 ± 2.0 years after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 years) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13N-NH3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. RESULTS: Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33 ± 0.31 and 1.01 ± 0.21 mL/min/g for Groups 1 and 2, respectively, P < .001), while mean hyperemic MBF values were similar in both Groups (2.68 ± 0.84 and 2.64 ± 0.94 mL/min/g, P = NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P = .018). Both mean and median CFR values demonstrated a significant reduction for Group 1 compared to Group 2 patients (2.07 ± 0.74 vs 2.63 ± 0.48, P = .025). CONCLUSIONS: This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV.


Assuntos
Circulação Coronária , Transplante de Coração/efeitos adversos , Purinas/farmacologia , Pirazóis/farmacologia , Doenças Vasculares/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Transplante Homólogo
9.
Phys Med Biol ; 60(21): 8275-301, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450115

RESUMO

Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.


Assuntos
Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca/métodos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Imagem de Perfusão do Miocárdio/métodos , Imagens de Fantasmas , Respiração , Humanos , Imageamento Tridimensional , Movimento (Física) , Contração Miocárdica/fisiologia , Radiografia , Razão Sinal-Ruído
10.
Biophys J ; 106(4): 813-23, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559984

RESUMO

Long-distance intracellular axonal transport is predominantly microtubule-based, and its impairment is linked to neurodegeneration. In this study, we present theoretical arguments that suggest that near the axon boundaries (walls), the effective viscosity can become large enough to impede cargo transport in small (but not large) caliber axons. Our theoretical analysis suggests that this opposition to motion increases rapidly as the cargo approaches the wall. We find that having parallel microtubules close enough together to enable a cargo to simultaneously engage motors on more than one microtubule dramatically enhances motor activity, and thus minimizes the effects of any opposition to transport. Even if microtubules are randomly placed in axons, we find that the higher density of microtubules found in small-caliber axons increases the probability of having parallel microtubules close enough that they can be used simultaneously by motors on a cargo. The boundary effect is not a factor in transport in large-caliber axons where the microtubule density is lower.


Assuntos
Transporte Axonal , Axônios/metabolismo , Microtúbulos/metabolismo , Modelos Neurológicos , Animais , Humanos , Cinesinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...